Home Blog  

27 Jun 2014


TMP75B 1.8-V Digital Temperature Sensor with Two-Wire Interface and Alert. by ti.com:

The TMP75B is an integrated digital temperature sensor with a 12-bit analog-to-digital converter (ADC) that can operate at a 1.8-V supply, and is pin and register compatible with the industry-standard LM75 and TMP75. This device is available in an SOIC-8 package and requires no external components to sense the temperature. The TMP75B is capable of reading temperatures with a resolution of 0.0625°C and is specified over a temperature range of –55°C to +125°C.

The TMP75B features SMBus and two-wire interface compatibility, and allows up to eight devices on the same bus with the SMBus overtemperature alert function. The programmable temperature limits and the ALERT pin allow the sensor to operate as a stand-alone thermostat, or an overtemperature alarm for power throttling or system shutdown.

TMP75B – 1.8V Capable Digital Temperature Sensor – [Link]

23 Jun 2014


sameer @ sgprojects.co.in writes:

Water level indicator plays a vital role in the world of water saving technology. It indicates five different level of water in a tank mostly used in housing water tank,cooler tank etc. The circuit is based on the microcontroller AT89S52 which is brain of the whole system. A CMOS IC4049 is used as a water sensor which provides input signals for the MCU. The output of microcontroller is connected to an LCD and a buzzer. LCD shows the water level in five steps. When the tank gets full of water,an alarm sounds.

Water Level Indicator using LCD – [Link]

16 Jun 2014


by Nancy Owano @ phys.org:

Sony’s advance in image sensors appears quite natural: the company has developed a set of curved CMOS image sensors based on the curvature of the eye. A report on the sensors in IEEE Spectrum said that, “in a bit of biomimicry,” Sony engineers were able to achieve a set of curved CMOS image sensors using a “bending machine” of their own construction.

Sony inspired by biomimicry develops curved CMOS sensors – [Link]

24 May 2014


By European Editors

Air pollutants such as particles and noxious gases are known to be harmful to human health. In industry, on the other hand, high concentrations of gases such as methane or propane, or carbon monoxide resulting from poor combustion processes, can present an immediate safety risk. To overcome these problems, a wide range of groups such as homeowners, operators of commercial buildings or industrial sites, city councils, and environmental agencies need access to equipment for monitoring air quality and detecting the presence of various gases.

Sniffing the Air: Sensors for Monitoring Air Quality and Safety – [Link]

24 May 2014

Electronic scales are widely used in kitchens and bathrooms because they can quickly make accurate weight measurements.

A load sensor called a load cell is used for weight measurement.  Because the output voltage of this sensor is very small, it is amplified by an operational amplifier (op-amp) and input to an A/D converter.  A microcontroller (MCU) converts the signal to weight based on the conversion results of the A/D converter and displays it.

Renesas offers a lineup of microcontroller products for meeting their customers’ needs, such as the RL78/L1x, 78K0/Lx3, and R8C/Lx series with built in LCD driver for designing small and inexpensive models.  For highly precise measuring, they offer the 78K0/Lx3, the H8/38086R group, the RX21A group, and other with built-in high precision ΔΣ (delta-sigma) A/D converter.

Renesas MCU for Electronic Scales – [Link]

16 May 2014


by John Widder & Alessandro Morcelli :

The application of MEMS (Micro Electro-Mechanical Systems) technology to microphones has led to the development of small microphones with very high performance. MEMS microphones offer high SNR, low power consumption, good sensitivity, and are available in very small packages that are fully compatible with surface mount assembly processes. MEMS microphones exhibit almost no change in performance after reflow soldering and have excellent temperature characteristics.

Basic principles of MEMS microphones – [Link]

16 May 2014


According to a press release from the ALPS Electric Co their HSHCAL humidity sensor is currently the world’s smallest commercially available digital humidity sensor. Preliminary information released by ALPS on the chip shows a 2 x 2 x 1mm package with six contact pads. [via]

The sensing mechanism uses changes in capacitance to measure relative humidity in the range from 0 to 100 %. Humidity readings are output as a digital value with a 14-bit resolution and a quoted accuracy of ±1.5 % RH at 25 ºC, 50 % RH. An internal temperature measurement feature outputs temperature information which is also used internally to compensate for the temperature coefficient of the humidity sensing element and improve linearity. The HSHCAL sensor operates from 1.71 to 1.89 V and draws 15 µA operating at 1.8 V and 1 Hz.

The company anticipate that the device will principally find a home in mobile devices such as Smartphones, wearable electronics and also in air-conditioning, air purification and refrigeration applications. The device is now in full production.

A Tiny Digital Humidity Sensor – [Link]

10 May 2014


by Kalle Hyvönen:

I saw a cool app-note from Maxim that described a gamma-photon detector which used a regular PIN-diode as a sensor. The actual circuit looked simple enough so I decided build it, you can never have too many measurement instruments right?

The detector in itself is pretty simple, just some op-amps and a comparator. I decided to build it with all the bells and whistles so I included a digital potentiometer so you can adjust the reference voltage to the comparator via an SPI-bus. I also used a 5V reference shunt as the reference for the op-amps and the comparator to keep the circuits behaviour more consistent. I didn’t have any adjustable capacitors with an SPI bus so I decided against using one (instead of C4, changing the capacitance changes the gain).

A radiation detector with a solid-state PIN-diode sensor – [Link]

9 May 2014


Allegro MicroSystems have announced the release of its ATS605 range of rotation sensors. This device provides a single chip solution to rotational position sensing of a ferrous gear target. Using three integrated Hall sensors together with Hall interface amplifiers, AGC stage, A/D converter and a synchronous digital controller, the ATS605 is able to accurately resolve the movement of much smaller-toothed cogs than was possible with previous revolution detector solutions.

Signals from the three Hall sensors are routed to two independent differential channels where digital processing with Automatic gain control helps compensate for magnetic variation and system offsets. The open-drain outputs provide voltage output signals which mirror the sensed target’s shape, with a phase separation between the two channels proportionate to the size of the target teeth vs. the Hall element spacing. These produce a highly accurate speed output and can also provide direction of travel information. Devices with an ‘H’ suffix have a maximum operational frequency of 40 kHz. [via]

Single Chip Rotation Sensor – [Link]

1 May 2014


Ioannis Kedros writes:

I just finish the assembly process of my latest super mini project! It’s nothing amazing… but its a very handy sensor module!
On board there are three commonly used sensors: SHT10, BMP085 and MPU6050. I was constantly using those ones over my last projects and I thought it will be a good idea to make a simple module with all of those. They are communicating over I2C and the module can accept voltages from 3V to 6V.

Sensor Stick – [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits