Home Blog  

16 Jul 2015


LTC4015 is a highly integrated, high voltage multichemistry synchronous step-down battery charger controller with onboard telemetry functions. The device efficiently transfers power from a variety of input sources, such as wall adapters and solar panels, to a Li-Ion/Polymer, LiFePO4 or lead-acid battery stack and system load up to 35V.

It provides advanced system monitoring and management functionality, including battery Coulomb counting and health monitoring. While a host microcontroller is required to access the most advanced features of the LTC4015, the use of an I²C port is optional. The main charging features of the product can be adjusted using pin-strap configurations and programming resistors.

35VIN & VOUT battery charge controller delivers up to 20A – [Link]

15 Jul 2015


by Robert Gawron @ robertgawron.blogspot.com:

Li-ion cells become more and more popular due to their capacity and reasonable prices. In this entry I will present how to build a simple li-ion battery charger based on MCP73831 chip. It’s a quite useful device for DYI projects,in addition its cost is only around 1,5 euro.

The device uses USB port as a power supply (mini-USB connector). I use the standard gold-pins as an output socket. There’re three of them, but only two are used (looking on the image, counting from top: V+, V-). I will design my li-ion based devices in the same way (same socket, but female), then if I will connect it in the incorrect direction (rotated 180 degrees) they won’t be damaged (V- connected to V-, but V+ connected to n/c pin) – simple way to avoid plugging in an incorrect way.

How to make a USB Li-Ion charger – [Link]

10 Jul 2015


Paul Allen build a great NiMh charger that connects to PC for controlling full aspects of charging process. He writes:

It’s been a long time since I posted an update on my battery charger project (in fact it has been a long time since I have posted anything!). I have been Very Busy with projects for my work and when I am not working for work, I am working on battery chargers. When I am not working on battery chargers I am trying to be a good husband and father as well as find time to do things like mow the lawn or fix the handle my son broke off the faucet.

“The Best NiMh Charger” Some may say that is quite the claim, but wait until you see all it can do (mostly thanks to the software Mark my programming friend wrote for it).

The Best NiMh Charger – [Link]

1 Jul 2015


Rohit Gupta made this LiTiny project, a tiny LiIon charger:

In the end I had a LiIon charger capable of charging batteries @700mA restricted due to thermal dissipation limits of home made PCBs.

LiTiny- A Tiny LiIon charger for most things battery – [Link]

9 Jun 2015



TI’s new bq25890, bq25892, and bq25895 5A chargers with TI’s MaxCharge™ technology charge your mobile device faster while keeping your device cooler. The switch-mode chargers can charge a 1-S Li-Ion cell to 80% capacity in 30 minutes, while traditional devices only reach 30%. The I2C-controlled chargers’ high efficiency and thermal management result in the fastest, safest and coolest charging capability.

Key features and benefits

  • Fast charging to high capacity battery with up to 5A high charging current
  • Optimized for high voltage input: >91% charging efficiency at 3A with 9V input
  • Innovative Input Current Optimizer (ICO) to maximize input power without overloading adapter
  • Resistance compensation from charger output to cell terminal to enhance power delivery to battery
  • Integrated ADC for charging system monitoring

Single-cell 5-A Li-Ion battery charger with MaxCharge™ technology – [Link]

17 Mar 2015


Lithium ion battery charger implementation using C8051F300 app note(PDF!) from Silicon Labs.

Driven by the need for untethered mobility and ease of use, many systems rely on rechargable batteries as their primary power source. The battery charging circuitry for these systems is typically implemented using a fixed-function IC to control the charging current/voltage profile.

The C8051F30x family provides a flexible alternative to fixed-function battery chargers. This application note discusses how to use the C8051F30x family in Li-Ion battery charger applications. The Li-Ion charging algorithms can be easily adapted to other battery chemistries, but an understanding of other battery chemistries is required to ensure proper charging for those chemistries.

App note: Lithium ion battery charger using C8051F300 – [Link]

12 Mar 2015


The NEW Solar BMS charger for LiFePO4 or any other Li-ion battery and used for OffGrid House, RV or boats, with wireless datalogging.

 Solar BMS (Solar Battery Management System)is a solar charge controller designed to replace the Lead Acid solar charge controllers most people use today in Offgrid, RV, Boats and multiple other applications with 12V and 24V systems. Solar BMS can be used with 3 up to 8 Lithium cells (any type) or supercapacitors. The new SBMS100 will have multiple improvements over the first generation SBMS4080 see further for details.

120A Solar BMS charger LiFePO4, Li-ion OffGrid,RV with WiFi – [Link]

3 Mar 2015


by T.K. Hareendran:

Here is a tried and tested sample circuit of a Li-Ion battery charger that can be used to charge any 3.7V Li-Ion battery using a 5VDC (USB, Solar Panel…) power supply. At the heart of the circuit is one microchip MCP73831, available in SOT-23-5 package. MCP73831 is a highly advanced linear charge management controller for use in space-limited, cost-sensitive applications. This IC employs a constant current/constant voltage charge algorithm with selectable preconditioning and charge termination.

3.7V Li-Ion Battery Charger Circuit – [Link]

2 Mar 2015


Standalone Linear Li-Ion battery charger with thermal regulation in ThinSOT application note (PDF!) from Linear:

The LTC4054 is a single cell lithium-ion battery charger using a constant-current/constant voltage algorithm. It can deliver up to 800mA of charge current (using a good thermal PCB layout) with a final float voltage accuracy of ±1%. The LTC4054 includes an internal P-channel power MOSFET and thermal regulation circuitry. No blocking diode or external current sense resistor is required; thus, the basic charger circuit requires only two external components. Furthermore, the LTC4054 is capable of operating from a USB power source.


App note: Standalone Linear Li-Ion battery charger with thermal regulation – [Link]

26 Feb 2015


by BinksBrew @ instructables.com:

For a long time I’ve had old back up cell phones taking up space in my desk drawer. I was curious if I could put any of these old phones to some use. I can’t just throw them away so I decided to try and re-purpose one of them as a portable charger for my current smart phone.

Portable Charger for your Smartphone – [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits