Home Blog  

6 Jul 2015


Rui @ ruijc.webnode.com writes:

The fact of having a CNC available at home gave me the freedom to build stuff more easily and quickly than before. Without this machine parts would take some time to manufacture and most likely would not end so perfect. This caused new ideas to be easily implemented.

This was one of those ideas that was born only by the desire to build a small replica of a gaming machine without any electronica inside. However,i would not pass up the opportunity to invent and build something to install inside.
I wanted to have something different and unique for that cabinet and not have a mini game machine. I chose to create a small and simple weather station to show not only temperature and humidity values but also hours and if possible something else …
Weather Station – [Link]
2 Jul 2015

This design is a basic temperature control for refrigerators that has an electromechanical circuit. It specifically uses MC9RS08KA4CWJR microcontroller which has an 8-bit RS08 central processing unit, 254 bytes RAM, 8Kbytes flash, two 8-bit modulo timers, 2-channel 16-bit Timer/PWM, inter-integrated circuit BUS module, keyboard interrupt, and analog comparator. This project effectively controls temperature of any device using resistors and capacitors.

The refrigerator temperature control is a basic RC network connected to an I/O pin. A variable resistor (potentiometer) is used to modify the time the capacitor takes to reach VIH and adjusting its resistance varies that time. A basic voltage divider with one resistor and one thermistor is used to implement the temperature sensor. The thermistor resistance depends on the temperature. For each temperature, we have a different voltage in the divider. This value is effectively measured with the Analog-to-Digital Converter (ADC) implemented by software that uses one resistor, one capacitor, and the analog comparator. In addition, VDD and VSS are the primary power supply pins for the MCU. This voltage source supplies power to all I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides a regulated lower-voltage source to the CPU and other MCU internal circuitry.

This temperature control will not only be applicable to refrigerators but also to electronic devices that need temperature monitoring. It is a low cost device that may be integrated to appliances, medical and industrial equipment.

Basic Temperature Control for Refrigerators – [Link]

29 Jun 2015


by sameer:

We always try to know the physical and electrical data like temperature, pressure, current, ac voltage etc. In this project, I’m going to display these data in the real time as well as I’ill record it to a memory card(SD/microSD/MMC card). Here the project can display four different things; ac voltage, environment temperature, relative humidity and the real time in 12 hrs format.

SD Card Data Recorder – [Link]

27 Jun 2015


by kinasmith @ instructables.com:

This is a tutorial on building a Compost Temperature monitoring system. It details how to build a web connected wireless sensor network and shows one possible way it could be constructed.

A Medium level of knowledge and skills are required. Basic knowledge of soldering and breadboarding will be very useful. I will assume that you know enough Arduino code to understand what a Function is, how a Library is useful, and why Serial Communication is important. And you will need to know enough electronics to understand what I mean with terms like Voltage, Current, Resistance, etc. A (very) basic knowledge of how radio works would also be useful for understanding the concepts, but not essential for following along. This is not advanced by any means and I will attempt to always reference materials that will cover these concepts in greater detail.

Compost Sensor – [Link]

22 Jun 2015


Rui JC writes:

This circuit is a small “on-board” temperature recorder for RC models.

For those who practice this hobby know that the engine temperature is very important, not only for performance but also to ensure the smooth operation and durability of the engine.

It records the motor temperature of my helicopter in flight 2 times per second and stores it in memory.

Helicopter Temperature Logger – [Link]

29 May 2015


Mohamed Afzal has written an article detailing how to send data to Thingspeak.com with ESP8266 + DS18B20 temperature sensor:

The stock Firmware in the ESP8266 supports AT commands and for communicating with this need an micro-controller like Arduino. But i want to make a simple solution for that without using external micro-controller. NodeMCU firmware was the best thing i found. To upload the NodeMCU firmware please do a google search, there are tons of video’s and supporting documents out there. I am not going to explain the flashing in this post.
NodeMCU is Lua based firmware and i hope most of the people will know it. Most router GUI also built by Lua.
If you are done with the flashing the ESP8266 module, lets connect the DS18B20 to GPIO 0. If you are not aware of pin mapping please check it before connecting anything to the module.

ESP8266 + DS18B20 Temperature sensor sends data to Thingspeak.com – [Link]

24 May 2015


by Nathan Chantrell:

This is a small dev board I designed to make experimenting with and deploying the ESP8266 ESP-03 modules a bit easier. As well as breaking out all the pins to 2.54mm headers it has a position to fit either a DS18B20 temperature sensor or a DHT22 temperature/humidity sensor plus the required pull up resistor. It can be powered from 3.3V or 5V+* if the regulator is fitted and there is a footprint for a micro USB connector if required.

ESP8266 ESP-03 Dev Board – [Link]

23 May 2015


by indigod0g @ instructables.com:

In this project, we will be making a mini weather station that measures temperature and humidity and transmits them wirelessly to a ground station, which displays the readings on an LCD display!

It’s a fairly easy project and can be used either on its own or part of something bigger.

Mini weather station – [Link]

19 May 2015


±2% accuracy in a whole range of relative humidity measurement – that´s just one of several improvements brought by the third generation of miniature calibrated sensors from company Sensirion.

Even the actual series like SHT1x and SHT2x belong to a top in this segment. Forthcoming series SHT3x (SHT30, SHT31 and soon also SHT35) addresses mainly those of you, requiring maximum accuracy even in limit values (humidity below 10% and above 90%), miniature dimensions and ultra low power consumption. So a main difference of a new SHT31 compared to SHT21 is, that a typical +-2% is maintained in a whole range. Together with a precise temperature measurement in element we still have a possibility to simply compute a dew point, what´s one of the key parameters for ventilation control (HVAC, heat recovery). If it´s “only” necessary to guide a humidity not to exceed certain level, then you´ll probably also use the output „Alert“ pin, able to start interrupt in a host MCU for instance or directly control further devices. Output of the SHT3x sensor is the linearized value, which can be easily transformed to a final value (%RH, °C).SHT31 is available in 2 versions – SHT31-DIS-B with a digital output via well-proven I2C bus (2 selectable addresses) and also in a version SHT31-ARP-B with a linearized analogue (proportional) output. That´s why SHT31-ARP-B is an interesting alternative for direct processing in analogue circuits, as it contains 2 independent outputs with output voltage of 10-90% Vdd, responding to 0-100%RH and -45 to +130°C temperature. Digital output version also features wide possibilities of setting regarding measurement frequency, communication speed and other parameters.

Detailed information will provide you SHT3x-ARP and SHT3x-DIS datasheets. Comparison of particular series will provide you the „Sensirion_Humidity” flyer.

Even the humidity & temperature sensors can be “3G” – [Link]

2 Apr 2015


by Mahesh Venkitachalam:

I was in Bhutan last December, and as we travelled to different locations, I kept wondering what the temperature and altitude was, and wished I had some gizmo that would show me these values. Back home, I did a bit of research on altitude sensors, and one that came up was the cheap BMP180 sensor. It measures temperature and pressure, and the latter can be used to calculate the altitude. It’s been lying around with me the past few months, and now I’ve finally gotten around to building a display around it.

Temperature / Altitude / Pressure Display using BMP180 – [Link]





Search Site | Advertising | Contact Us
Elektrotekno.com | Free Schematics Search Engine | Electronic Kits